50 research outputs found

    Edge-weighting of gene expression graphs

    Get PDF
    In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed

    Comparison of In-Person and Online Recordings in the Clinical Teleassessment of Speech Production: A Pilot Study.

    Get PDF
    In certain circumstances, speech and language therapy is proposed in telepractice as a practical alternative to in-person services. However, little is known about the minimum quality requirements of recordings in the teleassessment of motor speech disorders (MSD) utilizing validated tools. The aim here is to examine the comparability of offline analyses based on speech samples acquired from three sources: (1) in-person recordings with high quality material, serving as the baseline/gold standard; (2) in-person recordings with standard equipment; (3) online recordings from videoconferencing. Speech samples were recorded simultaneously from these three sources in fifteen neurotypical speakers performing a screening battery of MSD and analyzed by three speech and language therapists. Intersource and interrater agreements were estimated with intraclass correlation coefficients on seventeen perceptual and acoustic parameters. While the interrater agreement was excellent for most speech parameters, especially on high quality in-person recordings, it decreased in online recordings. The intersource agreement was excellent for speech rate and mean fundamental frequency measures when comparing high quality in-person recordings to the other conditions. The intersource agreement was poor for voice parameters, but also for perceptual measures of intelligibility and articulation. Clinicians who plan to teleassess MSD should adapt their recording setting to the parameters they want to reliably interpret

    Between data providers and concerned citizens: Exploring participation in precision public health in Switzerland.

    Get PDF
    This empirical article explores the dynamics of exchange and reciprocity between cohorters, that is, study organizers, and cohortees, that is, study participants. Drawing on literature on bioeconomy and valuation, we analyze cohortees' expectations in return for the "clinical labor" they perform in the pilot phase of a Swiss precision public health study. Based on an ethnography of this cohort and data from seven focus groups with cohortees (n = 37), we identified four positions: (1) the good citizen participant, (2) the critical participant, (3) the concerned participant, and (4) the self-oriented participant. These reveal that cohortees' participation, still framed in altruistic terms, nevertheless engages expectations about reciprocal obligations of the state and science in terms of public health, confirming the deep entanglement of gift-based, financial, and moral economies of participation. The different values emerging from these expectations-robust scientific evidence about environmental exposure and a socially oriented public health-provide rich indications about stake making which might matter for the future of precision public health

    A simple framework for modelling the photochemical response to solar spectral irradiance variability in the stratosphere

    Get PDF
    The stratosphere is thought to play a central role in the atmospheric response to solar irradiance variability. Recent observations suggest that the spectral solar irradiance (SSI) variability involves significant time-dependent spectral variations, with variable degrees of correlation between wavelengths, and new reconstructions are being developed. In this paper, we propose a simplified modelling framework to characterise the effect of short term SSI variability on stratospheric ozone. We focus on the pure photochemical effect, for it is the best constrained one. The photochemical effect is characterised using an ensemble simulation approach with multiple linear regression analysis. A photochemical column model is used with interactive photolysis for this purpose. Regression models and their coefficients provide a characterisation of the stratospheric ozone response to SSI variability and will allow future inter-comparisons between different SSI reconstructions. As a first step in this study, and to allow comparison with past studies, we take the representation of SSI variability from the Lean (1997) solar minimum and maximum spectra. First, solar maximum-minimum response is analysed for all chemical families and partitioning ratios, and is compared with past studies. The ozone response peaks at 0.18 ppmv (approximately 3%) at 37 km altitude. Second, ensemble simulations are regressed following two linear models. In the simplest case, an adjusted coefficient of determination <span style="border-top: 1px solid #000; color: #000;">R</span><sup>2</sup> larger than 0.97 is found throughout the stratosphere using two predictors, namely the previous day's ozone perturbation and the current day's solar irradiance perturbation. A better accuracy (<span style="border-top: 1px solid #000; color: #000;">R</span><sup>2</sup> larger than 0.9992) is achieved with an additional predictor, the previous day's solar irradiance perturbation. The regression models also provide simple parameterisations of the ozone perturbation due to SSI variability. Their skills as proxy models are evaluated independently against the photochemistry column model. The bias and RMS error of the best regression model are found smaller than 1% and 15% of the ozone response, respectively. Sensitivities to initial conditions and to magnitude of the SSI variability are also discussed

    Arena3D: visualizing time-driven phenotypic differences in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes.</p> <p>Results</p> <p>Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene <it>lsm14a </it>in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.</p> <p>Conclusions</p> <p>We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: <url>http://arena3d.org/</url>.</p

    Intuitive Visualization and Analysis of Multi-Omics Data and Application to Escherichia coli Carbon Metabolism

    Get PDF
    Combinations of ‘omics’ investigations (i.e, transcriptomic, proteomic, metabolomic and/or fluxomic) are increasingly applied to get comprehensive understanding of biological systems. Because the latter are organized as complex networks of molecular and functional interactions, the intuitive interpretation of multi-omics datasets is difficult. Here we describe a simple strategy to visualize and analyze multi-omics data. Graphical representations of complex biological networks can be generated using Cytoscape where all molecular and functional components could be explicitly represented using a set of dedicated symbols. This representation can be used i) to compile all biologically-relevant information regarding the network through web link association, and ii) to map the network components with multi-omics data. A Cytoscape plugin was developed to increase the possibilities of both multi-omic data representation and interpretation. This plugin allowed different adjustable colour scales to be applied to the various omics data and performed the automatic extraction and visualization of the most significant changes in the datasets. For illustration purpose, the approach was applied to the central carbon metabolism of Escherichia coli. The obtained network contained 774 components and 1232 interactions, highlighting the complexity of bacterial multi-level regulations. The structured representation of this network represents a valuable resource for systemic studies of E. coli, as illustrated from the application to multi-omics data. Some current issues in network representation are discussed on the basis of this work

    Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining

    Get PDF
    Metabolomics experiments seldom achieve their aim of comprehensively covering the entire metabolome. However, important information can be gleaned even from sparse datasets, which can be facilitated by placing the results within the context of known metabolic networks. Here we present a method that allows the automatic assignment of identified metabolites to positions within known metabolic networks, and, furthermore, allows automated extraction of sub-networks of biological significance. This latter feature is possible by use of a gap-filling algorithm. The utility of the algorithm in reconstructing and mining of metabolomics data is shown on two independent datasets generated with LC–MS LTQ-Orbitrap mass spectrometry. Biologically relevant metabolic sub-networks were extracted from both datasets. Moreover, a number of metabolites, whose presence eluded automatic selection within mass spectra, could be identified retrospectively by virtue of their inferred presence through gap filling

    An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics

    Get PDF
    Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs annotated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from multiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame translation considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis. Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously identify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae, Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and integrated annotation files that can be viewed in a genome browser for any prokaryote

    Discovertebral (Andersson) lesions of the spine in ankylosing spondylitis revisited

    Get PDF
    A well-known complication in patients with ankylosing spondylitis (AS) is the development of localised vertebral or discovertebral lesions of the spine, which was first described by Andersson in 1937. Since then, many different terms are used in literature to refer to these localised lesions of the spine, including the eponym ‘Andersson lesion’ (AL). The use of different terms reflects an ongoing debate on the exact aetiology of the AL. In the current study, we performed an extensive review of the literature in order to align communication on aetiology, diagnosis and management between treating physicians. AL may result from inflammation or (stress-) fractures of the complete ankylosed spine. There is no evidence for an infectious origin. Regardless of the exact aetiology, a final common pathway exists, in which mechanical stresses prevent the lesion from fusion and provoke the development of pseudarthrosis. The diagnosis of AL is established on conventional radiography, but computed tomography and magnetic resonance imaging both provide additional information. There is no indication for a diagnostic biopsy. Surgical instrumentation and fusion is considered the principle management in symptomatic AL that fails to resolve from a conservative treatment. We advise to use the term Andersson lesion for these spinal lesions in patients with AS
    corecore